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SMRT adaptation to altimetry

What has been achieved:

We have done what we planned !

1) develop a new RTE solver to compute time-
dependent backscatter

st
-1 order iterative solution

- computationally efficient

- extensive internal validation (energy conservation,

)

- extensive validation against Lacroix et al. 2008.
Bonus: assessed Lacroix’s approximations and
found a few bugs.
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SMRT adaptation to altimetry

What has been achieved:

2) implemented new “rough” surface and interface

formulation

- [EM as in Fung al. 1992 (backscatter only)
- Geometrical optics (backscatter only)
- Geometrical optics (bi-directional scattering)

Cover a wide range of roughness / wavelength

Perspective: Small Perturbation Method or Small

Slope Approximation
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SMRT adaptation to altimetry

SMRT has grown:

Line of Code
May 2019: 4922
Today: 7086

GitHub

https://github.com/smrt-model/smrt

The altim module will be merged in the next months and pushed to github
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https://github.com/smrt-model/smrt

On the higher order interactions

First order interaction is limited to low frequencies / small grains:

st
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On the higher order interactions

nd
Perspective: implementa 2 order model in SMRT.

Solution: Monte Carlo technique

- explicitly compute the trajectory of the wave/photons Layered
- relatively easy to implement snowpack
- computationally intensive / very slow convergence

Byt here:
1,40rder can still be computed with the iterative method (accurately)
2 orderis small in the Ka band and at lower frequencies

nd
Solution: compute an approximate of the 2 order with the Monte Carlo technique.
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On surface roughness

Which roughness scales count for snow

?
. Centimeter scale (IEM domain) E
« Metric scale (GO domain) =

« Topographic scale (AltiDop domain)

— consequences for the frequency dependence
— consequences for in-situ data requirement

Need to learn more on the roughness of

snow surfaces.
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On running SMRT with in-situ data

SMRT has been used with a “synthetic” snowpack representative of the ice-sheet
SMRT can run on the ice-sheets, seasonal snow, sea-ice, frozen lakes, ...

Our short-term plan: use ASUMA traverse data (2016)
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On running SMRT with in-situ data

Surface DEM (centimeter resolution)
— Meter-scale roughness
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On running SMRT with in-situ data

Even with such comprehensive dataset:

- the choice of the microstructure remains an issue / related to snow grain size measurements.
- 1 snow core for a kilometer wide pixel

In brief, several parameters are unknown or inaccurate.
Our plan for the coming months:

- SMRT simulations with ASUMA in-situ data = altimetry and passive modes
- comparison with Ku and Ka band altimetric data + 10, 19, 37 GHz passive microwave

— Publication.
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Conclusion

- we now have a passive / radar / altimetric microwave radiative transfer model using consistent physics, coding
interface, working consistently across a few media (ice-sheet, sea-ice, ...).
— excellent for synergistic use of multi-sensor data; learning investment, ...

- SMRT is a repository of many existing legacy formulations, equations or models, but little new developments
+ Lacroix et al. 2008’s;model was almost lost.
- Altimetric code is 14 order as Lacroix 2008.

— need to develop new components. 2 order RT, microstructure, ...

- Even when available, using in-situ data to run SMRT is a big challenge. Both technical and fundamental issues.
— provide ready-to-use dataset (sugg. by M.J Brodzik, NSIDC)



